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A B S T R A C T

Hepatic fibrosis is a common middle stage of the pathological processes of chronic liver diseases. Clinical
intervention during the early stages of hepatic fibrosis can slow the development of liver cirrhosis and reduce the
risk of developing liver cancer. Performing a liver biopsy, the gold standard for viral liver disease management,
has drawbacks such as invasiveness and a relatively high sampling error rate. Real-time tissue elastography (RTE),
one of the most recently developed technologies, might be promising imaging technology because it is both
noninvasive and provides accurate assessments of hepatic fibrosis. However, determining the stage of liver
fibrosis from RTE images in a clinic is a challenging task. In this study, in contrast to the previous liver fibrosis
index (LFI) method, which predicts the stage of diagnosis using RTE images and multiple regression analysis, we
employed four classical classifiers (i.e., Support Vector Machine, Naïve Bayes, Random Forest and K-Nearest
Neighbor) to build a decision-support system to improve the hepatitis B stage diagnosis performance. Eleven RTE
image features were obtained from 513 subjects who underwent liver biopsies in this multicenter collaborative
research. The experimental results showed that the adopted classifiers significantly outperformed the LFI method
and that the Random Forest(RF) classifier provided the highest average accuracy among the four machine al-
gorithms. This result suggests that sophisticated machine-learning methods can be powerful tools for evaluating
the stage of hepatic fibrosis and show promise for clinical applications.
1. Introduction

Hepatic fibrosis is the middle stage of hepatitis of various types, of
liver cirrhosis and of any late period liver-related diseases. Patients with
hepatitis C or B virus who chronically suffer from fibrosis are more
vulnerable to hepatocellular carcinoma. Therefore, early detection and
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prompt intervention are important. It has been reported that more
aggravated hepatic fibrosis increases the risk of hepatocellular carcinoma
[1]; however, some interferon treatments can slow this process and
reduce morbidity from hepatocellular carcinoma [2], which is why the
Guide to the Prevention and Treatment for Chronic Hepatitis B considers it
essential to evaluate the stage of hepatic fibrosis both for treatment and
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for monitoring treatment effects.
However, determining the stage of liver fibrosis is still arduous.

Although a liver biopsy is widely considered the gold standard for
assessing liver fibrosis, the procedure's invasiveness can cause compli-
cations such as hemorrhage and pneumothorax. Moreover, limited
sample numbers and sizes usually lead to suboptimal accuracy [3–5].
Another option, serological examination, has some clinical implications;
however, it has been reported that its sensitivity and specificity vary
greatly. Moreover, serological examination cannot satisfy the re-
quirements for clinical treatments by itself because it is unable to accu-
rately stage liver fibrosis [6,7]: it can distinguish between hepatic fibrosis
and cirrhosis but cannot accurately determine the stage of hepatic
fibrosis. In addition, this type of examination is not sufficiently specific
because it can be affected by metabolism, extracellular-matrix diseases
and late-stage cancers [8]. Therefore, the Asian-Pacific Association for
the Study of the Liver recommends elastography instead of serological
examination. Many scholars have sought other noninvasive methods to
diagnose liver fibrosis, especially physical methods.

One existing noninvasive method is imaging diagnosis, which can
completely evaluate the entire organ. Therefore, imaging examination
has been widely adopted clinically. Imaging diagnosis can involve ul-
trasound, Computed Tomography (CT) or Magnetic Resonance Imaging
(MRI); of these, CT and MRI are expensive. Ultrasound is the most
feasible and inexpensive method. Unlike the others, it is suitable for use
on patients with medical metal devices; consequently, ultrasound is
widely accepted. Owing to the prevalence of ultrasound contrast and
ultrasonic elastography, ultrasound can provide not only information
about hepatic morphology and blood dynamics but also information
about physical properties such as liver stiffness or elasticity modulus. In
view of this capacity, ultrasound may emerge as one of the most
important noninvasive methods for evaluating liver fibrosis.

RTE is also increasing in popularity and is considered to be among the
most promising methods for staging hepatic fibrosis; however, it is un-
able to distinguish between intermediate degrees of liver fibrosis [9]. The
calculations of both the elastic ratio and fibrosis index of RTE have shown
intra-and inter-observer variability [10]. These methods have already
been applied to the research of hepatitis C [11], non-alcoholic liver
disease [12] and hepatitis B [13]. However, their classification accuracy
reaches only approximately 70% for chronic hepatitis B patients, which
cannot satisfy clinical demands.

A similar study conducted by Wu et al. [13] obtained predictions of
significant fibrosis with the help of a multiple regression statistical
analysis. However, multiple regression is a linearly dependent method,
while the relationships between the image parameters and stages of
hepatitis B are not linear.

As we know,machine-learning (ML) and pattern-recognitionmethods
have been widely studied for early diagnosis of hepatitis diseases, such as
in analyses of biochemical indices and clinical figures of hepatic fibrosis
[14–25]. However, because FibroScan has been adopted for assessing the
stage of liver fibrosis in recent years [26–28], studies have seldom been
conducted to evaluate the performance of machine learning in real-time
ultrasonic tissue elastography. This paper focuses on the analysis of data
in patients with chronic hepatitis B via RTE. The data indicate the rigidity
of tissue indirectly by the displacement caused by mechanical heart im-
pulses. The RTE software was developed by Hitachi (HI VISION Ascen-
dus; Hitachi Aloka Medical, Tokyo, Japan) and offers 11 parameters to
facilitate the quantitative evaluation of liver fibrosis [29,11]. A total of
513 subjects suffering from chronic viral hepatitis and cirrhosis were
studied and enrolled in a multicenter collaborative hospital study. Four
classical pattern-recognition methods, which included Naïve Bayes,
Random Forest (RF), K-Nearest Neighbor (KNN) and Support Vector
Machine (SVM), were applied to build an aided decision-support system
to estimate the stage of hepatic fibrosis.

The remainder of the paper is organized as follows. Section 2 presents
a brief introduction to the four machine-learning methods used in this
study. Section 3 focuses on the study methodology, in which RTE images
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were acquired to extract features and to perform further data pre-
processing. Section 4 presents the experimental results. Finally, Section 5
draws conclusions, discusses the findings, and describes some plans for
future work.

2. Machine-learning-based classification

The existing method, which is intended to determine the fibrosis
stage via RTE, is to obtain the LFI as the fibrosis index [13] using a linear
regression equation. However, this type of equation has limited func-
tionality, and satisfactory results are often difficult to obtain. In this
paper, we employ four classical machine learning methods to predict the
stage of hepatic fibrosis based on features extracted from numerous RTE
images. Our approach will improve the accuracy of staging hepatic
fibrosis based on RTE, and the performances of the four classifiers will be
assessed based on specific tasks. In this section, we briefly summarize the
basic concepts and properties of these classifiers, which include the Naïve
Bayes Classifier, Random Forest, K-Nearest Neighbor, and the Support
Vector Machine.

2.1. Naïve Bayes Classifier

The Naïve Bayes classifier is a type of probabilistic classifier that is
built directly on the Bayes theorem, i.e., predicting the class of a given
sample by computing the maximum posterior probability based on the
prior probability and the observed likelihood in the training set.
Although it relies on this bold assumption, the Naïve Bayes classifier
usually achieves good results in many practical application situations.

2.2. Random Forest (RF)

The Random Forest is a typical ensemble learning method that at-
tempts to obtain a strong classifier by combining the predictions of
multiple decision trees (individual decision tree can be regarded as a
weak classifier). The RF classifier can usually weaken the overfitting
problem that often occurs with individual decision-tree classifier. In
addition, Random Forest is robust to situations in which the feature
vectors contain discrete values.

2.3. K-Nearest Neighbor (KNN)

The K-Nearest Neighbor classifier is one of the exemplar-based sta-
tistical learning algorithms. Different from most learning algorithms,
where building the model during the training stage involves high costs,
the KNN method simply projects the original training data to the feature
space during the training stage. Then, the test sample's classification is
determined based on the labels of the K nearest training samples in the
feature space. In addition, some distance measures are usually adopted to
determine the contributions of the K neighbors.

2.4. Support vector machine (SVM)

A support vector machine aims to find the super hyperplane with the
largest margin between positive and negative samples in the feature
space. Thus, an SVM classifier can achieve good generalization ability
during the testing phase from the test samples. In addition, some kernel
functions (e.g., Gaussian Kernel, Radial Basis Function, etc.) are usually
used to project the data from a low dimensional to a high dimensional
feature space to improve linear separability as much as possible.

3. Methods

3.1. Acquiring RTE images

The RTE equipment used in this research was a color Doppler ultra-
sound diagnostic instrument, the Hitachi HI VISION Preirus (Hitachi
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Aloka Medical Corporation, Tokyo Japan) and a EUP-L52 linear probe
(Hitachi Aloka Medical) with a frequency range of 3–7 MHz. This in-
strument is equipped with real-time elastography software that can
analyze tissue dispersion quantitatively, attaining 11 elastography pa-
rameters. The equipment is also equipped with a strain histogram mea-
surement data-processing system. All the RTE examinations were
conducted with this platform.

The patients in the research were enrolled in the Chinamulti-centered
real-time elastography of liver fibrosis of hepatitis B project. These sub-
jects are the same group used in the previous study by Wu et al. [13].
Patients were placed in a supine position or in left lateral clinostatism if
necessary. The probe was placed within the range of the right anterior
axillary line and the midaxillary line of the fifth and eighth ribs. A
two-dimensional ultrasonic examination was performed to reveal the
hepatic tissue in the hepatic right anteroinferior segment, also called S5
according to Couinaud's anatomy, avoiding the cross-section of the large
intrahepatic vessels and limb shadows and obtaining a vertical image to
determine the direction of the heart impulse. Subsequently, the subjects
underwent an ultrasonic elastography dispersed quantitative investiga-
tion with the help of the preset hepatic elastographic imaging conditions
of the equipment. Leaving all settings unchanged on the equipment, a
sample frame with an area of 2.5 cm � 2.5 cm was placed on an area of
liver parenchyma approximately 0.5–1 cm from the liver surface. During
sample collection, patients held their breath. When an elastography
curve emerged with five stable waves according to the heart impulse, the
image was frozen and three or five stable waves were obtained before
dispersed quantitative analysis of their troughs (Figs. 1 and 2). Each time,
eleven elastography parameters were expected to be obtained, and their
average values were recorded. Both dynamic and static images were
stored on disks.

The fibrosis stages were determined by the outcomes of liver biopsies,
the procedure that is believed to be the gold standard. Advanced, US-
guided percutaneous liver biopsies targeted the same position in the
liver as the RTE method described above. A 1.2-mm-diameter and 160-
mm-long needle was used to perform the biopsy, which was performed
one week before the RTE checkup. Hepatic tissue from the biopsy was
immersed in formaldehyde before being enclosed in paraffin and stained
Fig. 1. List of 13 variables relevant to liver fibros
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with hematoxylin-eosin. The results were produced by senior patholo-
gists who were not informed of the ultrasonic and serum experimental
results. The liver fibrosis stage was determined according to the Scheuer
scoring system, while hepatic tissue pathology [30,31], was analyzed
according to the Prevention and Treatment Scheme on Virus Hepatitis,
revised in 2001. Chronic hepatic fibrosis is divided into stages labeled
S0–S4: (1) stage S0 indicates non-fibrosis; (2) stage S1 refers to slight
fibrosis in the portal area and its vicinity as well as to limited pre-sinusoid
fibrosis; (3) stage S2 represents a medium level at which fibrous septa
have formed but most of the lobular architecture remains; (4) stage S3
indicates a serious progression in which large amounts of fibrous septa
can be observed in the liver, which damage the lobules by separating
them into smaller parts, but no cirrhosis is observed; and (5) stage S4
indicates hepatic cirrhosis.

3.2. Feature extraction based on RTE images

We extracted 11 image features to quantify the variable patterns of
the RTE images. Each elastography parameter was directly obtained
through the real-time elastography software installed in the RTE equip-
ment (Hitachi HI VISION Preirus). The ranges of the 11 parameters of
hepatic fibrosis in real-time elastography are listed in Table 1.

3.3. Data preprocessing

For standardization, the 13 different diagnostic parameters—the 11
RTE features, age and sex—underwent conversion according to the
schemes shown in Fig. 1 [32].

(1) To function equivalently, these values were all converted to a
standard range, [0,1]. For instance, a patient's age usually ranges
from 0 to 100. If a patient is 55, his or her standardized value
should be 55/100 (0.55), which follows the formula below:

xi ¼ xi � xmin

xmax � xmin
; (1)
is classification and their encoding schemes.



Fig. 2. Typical RTE images (top) and corresponding pathological images (bottom) for each fibrosis stage.

Table 1
Parameter ranges of hepatic fibrosis in real-time elastography.

Attributes Value ranges of
attributes

1 mean relative strain value (MEAN) 54.49–141.24
2 standard deviation of the relative strain value (SD) 29.50–75.25
3 percentage of low-strain area (percentage of blue-color

area: %AREA)
0.76–62.52

4 complexity of low-strain area (perimeter squared/area:
COMP)

9.23–60.44

5 angular second moment (ASM) 0.00–0.04
6 Contrast(CONT) 63.98–353.30
7 Correlation(CORR) 0.93–0.98
8 entropy (ENT) 3.28–4.00
9 inverse difference moment (IDM) 0.09–0.28
10 skewness (SKEW) 0.18–1.23
11 kurtosis (KURT) 1.98–4.08
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where xi indicates the value of an input variable, xmin is the minimum of
the data range, and xmax is the maximum of the data range.

(2) Variables with only two attributes were encoded as binary values
(0, 1). For sex, 1 denoted female and 0 denoted male.
Table 2
Clinical characteristics and laboratory information of the study patients.

Characteristics and laboratory information Mean ± SD

Age, years 38.102 ± 13.01
Body mass index 21.787 ± 2.820
AST, IU/l 60.502 ± 77.747
ALT, IU/l 83.908 ± 123.976
Albumin, g/dl 42.152 ± 4.535
Total bilirubin, mg/dl 25.680 ± 45.396
GGT, IU/l 137.757 ± 249.299
ALP, IU/l 123.201 ± 144.937
Platelet count, �104 /L 197.538 ± 63.414
Prothrombin time, % 103.393 ± 15.464
3.4. Executing the prediction

Based on the RTE images, each sample could be represented by the
13-dimensional normalized variable mentioned above. When a sample
representation was input into a trained classifier, the classifier could
predict the fibrosis stage of the sample. In this paper, given the large
number of samples collected, it was feasible to both train the classifier
and test its function. In addition, to comprehensively evaluate the per-
formance of each classifier, accuracy, sensitivity and specificity criteria
were adopted. The accuracy rate identifies the proportion of correctly
classified samples among all samples, sensitivity identifies the proportion
of correctly classified positive samples, and specificity identifies correctly
classified negative samples [19,23].

4. Results

4.1. Data collection

The study protocol was approved by the independent ethics com-
mittees of the involved institutions, and the purpose of this research was
explained to the patients. Written informed consent was obtained in
advance. This prospective, multicenter, cross-sectional study was con-
ducted at the following eight hospitals in China: Third Affiliated Hospital
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(Sun Yat-sen University), Guangdong General Hospital, Beijing Youan
Hospital (Capital Medical University), First Affiliated Hospital (Guangxi
Medical University), West China Hospital (Sichuan University), Jiangsu
Province Hospital, Second Affiliated Hospital (Kunming Medical Uni-
versity) and Tongji Hospital (Tongji University).

The participants were selected according to the following three re-
quirements: (1) they were being examined for pathological liver tissue; 2)
they had a previous history of hepatitis B or a history of being HBsAg-
positive for more than 6 months, and their HBsAg and/or HBV DNA
was still positive (including both HBeAg-positive and HBeAg-negative);
and 3) they underwent an ultrasonic examination. Candidates suffering
from any other type of hepatitis other than hepatitis B, metabolic dis-
eases, fatty liver or drug- or alcohol-induced liver injury were
excluded [33].

As a result, 836 consecutive patients with chronic hepatitis B (CHB) or
cirrhosis were selected to undergo RTE and a percutaneous US-guided
liver biopsy between June 2010 and July 2013.

Samples were discarded when any of the following situations
occurred: (1) the RTE images exhibited horizontal slippage caused by
cardiac movement, (2) insufficient RTE images were obtained from the
subject, (3) the images included artifacts or revealed low US penetration,
or (4) the candidate had incomplete pathologic results. In total, 89 pa-
tients were excluded due to poor-quality images and 234 were excluded
because of inadequate clinical materials, resulting in a total of 513
samples used for analysis. The subjects included 341 male and 172 fe-
male patients aged 18–72 years. The patients' clinical characteristics and
laboratory information are listed in Table 2.

Fig. 2 shows typical RTE images and pathological images for each
fibrosis stage. Fig. 2 shows that as the stage of hepatic fibrosis increased,
the real-time elastography varied from an even green distribution to ones
with randomly distributed blue parts that increased during the progres-
sion to hepatic fibrosis.

The numerical distribution of the hepatic fibrosis stages of the 513



Table 3
The numerical distributions of the different stages of hepatic fibrosis.

S0 S1 S2 S3 S4

Number 119 164 88 72 70
Age 34.00 ± 11.00 37.07 ± 11.06 38.17 ± 10.91 44.18 ± 11.22 48.74 ± 9.98
Male 74 113 57 49 48
Female 45 51 31 23 22

Table 4
Accuracy, sensitivity, and specificity of stages S0/S1–4.

Accuracy Sensitivity Specificity

LFI 0.7934 0.7868 0.8151
Naïve Bayes 0.8044 0.7967 0.8250
RF 0.8287 0.8941 0.6499
KNN 0.8206 0.8926 0.6116
SVM 0.8147 0.9297 0.4625

Bold indicate the best performance of sensitivity, accuracy and specificity among the five
approaches.
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cases, which were confirmed by liver histology assessment, is shown in
Table 3. The pathological results showed that there were 119 cases in
stage 0, 164 cases in stage 1, 88 cases in stage 2, 72 cases in stage 3, and
70 cases in stage 4. The average age at each stage and the corresponding
numbers of male and female patients are also listed in Table 3.
Table 5
Accuracy, sensitivity, and specificity of stages S0–1/S2–4.

Accuracy Sensitivity Specificity

LFI 0.7934 0.7348 0.8410
Naïve Bayes 0.8118 0.7438 0.8614
RF 0.8118 0.7471 0.8621
KNN 0.8118 0.7449 0.8617
SVM 0.7934 0.7222 0.8443

Table 6
Accuracy, sensitivity, and specificity of stages S0–2/S3–4.

Accuracy Sensitivity Specificity

LFI 0.8246 0.7746 0.8437
Naïve Bayes 0.8522 0.7866 0.8738
RF 0.8809 0.6533 0.9600
KNN 0.8581 0.6419 0.9271
SVM 0.8471 0.5162 0.9579

Table 7
Accuracy, sensitivity, and specificity of stages S0–3/S4.

Accuracy Sensitivity Specificity

LFI 0.8460 0.7286 0.8646
Naïve Bayes 0.8610 0.6866 0.8854
RF 0.9125 0.5126 0.9706
KNN 0.9044 0.4252 0.9755
SVM 0.9000 0.1718 0.9917
4.2. Prediction of the stage of liver fibrosis

The patients' ages and sexes and the 11 RTE markers were combined
to produce the input features for the classifiers. The samples were divided
into two independent and identical sets: a training set (learning) and a
testing set (classification). Four-fold cross-validation was adopted to
evaluate the classifiers' performances [34]. Classification accuracy,
sensitivity, and specificity were calculated for each classifier. The path-
ological grading of the cases was adopted as the gold standard in this
study. The disparities between each level were subtle. The rigidity values
of the liver obtained via RTE obeyed a normal distribution; moreover, the
values of different levels sometimes overlapped, making it difficult to
separate them completely. Thus, a two-class classification was applied for
hepatic fibrosis, that is, S0/S1–4, S0–1/S2–4, S0–2/S3–4, and S0–3/S4.

The Naïve Bayes, RF, KNN and SVM classifiers were trained to predict
an individual's liver fibrosis degree. When distinguishing between S0 and
S1–4, the accuracy, sensitivity and specificity of each of the four
machine-learning algorithms are shown in Table 4. As shown in Table 4,
all four classifiers achieved comparable performances in terms of accu-
racy; however, they had different performances in terms of sensitivity
and specificity. SVM showed the highest sensitivity and the lowest
specificity, while the Naïve Bayes model showed the lowest sensitivity
and the highest specificity when a liver with hepatitis B virus infection
and no fibrosis was analyzed. The mismatch between sensitivity and
specificity in the models was caused primarily by the imbalanced
numbers of samples between the two classes; here, the number of S0
samples was 119, while the number of S1–4 samples was 394.

The European Association for the Study of the Liver and the Asian-
Pacific Association for the Study of the Liver suggest that patients in
stages S0–1 and S2–4, which imply slight and medium-level fibrosis,
respectively, should be subjected to both etiological treatment and anti-
fibrosis treatment. The accuracy, sensitivity and specificity in dis-
tinguishing these stages for each of the four machine-learning algorithms
are shown in Table 5. The results showed that all four of the classifiers
achieved comparable performances in terms of accuracy, sensitivity and
specificity in distinguishing these two classes.

Patients in stages S0–2 are considered to have medium-level fibrosis
while those in S3–4 are considered to have high-level fibrosis. Patients of
the latter type are approaching liver cirrhosis and may suffer clinical
manifestations. Abnormal indicators can be found in the laboratory ex-
periments. When distinguishing between S0–2 and S3–4, the accuracy,
sensitivity and specificity of each of the four machine-learning algo-
rithms are shown in Table 6. The RF classifier obtained the highest ac-
curacy and specificity when we determined whether the liver showed
serious hepatitis B virus infection and whether it required antiviral
therapy in the clinic.

Patients in Stage 4 have already suffered liver cirrhosis, and careful
observation of the related complications is needed. When distinguishing
between S0–3 and S4, the accuracy, sensitivity, and specificity of each of
the four machine-learning algorithms are shown in Table 7. From
Table 7, all four classifiers achieved good accuracy; however, their
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sensitivity scores were fairly low because of the small proportion of
subjects in stage four.

Based on the above results, the diagnostic efficiencies were respect-
able for all the classifiers. The RF classifier yielded the best average ac-
curacy among the four machine-learning algorithms.

5. Discussion and conclusions

When applying machine learning to hepatic fibrosis, previous
research has focused primarily on the prediction of survival vs. mortality
groups [14,17–21,23–25]; few investigations have been conducted on
the four stages of liver fibrosis [15,26–28]. Moreover, most of these have
focused only on hepatitis C [15,16,28]. To our knowledge, no prior
studies have applied machine-learning techniques to assess the stage of
liver fibrosis in patients suffering from hepatitis B using real-time ultra-
sonic tissue elastography data. In this paper, we used four ML algorithms
to classify liver fibrosis into four stages (S0/S1–4, S0–1/S2–4, S0–2/
S3–4, and S0–3/S4) based on RTE ultrasound data. A previous study
conducted byWu et al. [13] to predict significant fibrosis used traditional
statistical analysis to stage liver fibrosis in patients suffering from hep-
atitis C. Together with multiple regression equations, the LFI, which is a
diagnostic index used to categorize liver rigidity, was established.
Although the subjects in this joint study were all hepatitis B patients, the
LFI diagnostic index was applied as well as BLFI, which focuses on
determining the liver rigidity of hepatitis B patients, which can also be
obtained via multiple regression equations. The previous study by Wu
et al. [13] compared the efficacies of these two indices. The authors
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evaluated only the predictive performance for two groups (S0–S1 vs.
S2–S4 and S0–S3 vs. S4). The results showed that the accuracies of BLFI
and LFI for predicting significant fibrosis (S0–S1 vs. S2–S4) were 77.2%
and 76.9%, respectively. For cirrhosis (S0–S3 vs. S4), the accuracies of
BLFI and LFI were 77.7% and 79.3%, respectively. The sensitivities of
BLFI and LFI for predicting significant fibrosis (S0–S1 vs. S2–S4) were
77.0% and 77.0%, respectively. For cirrhosis (S0–S3 vs. S4), the sensi-
tivities of BLFI and LFI were 80.0% and 74.3%, respectively. The speci-
ficities of BLFI and LFI for predicting significant fibrosis (S0–S1 vs.
S2–S4) were 77.3% and 76.8%, respectively. For cirrhosis (S0–S3 vs.
S4), the specificities of BLFI and LFI were 77.4% and 79.8%, respectively.
We compared our results (Tables 4–7) with the BLFI and LFI results from
Wu et al. [13] listed above and concluded that ML achieved much higher
accuracy than did the traditional statistics. However, the sensitivities and
specificities of the classifiers are affected by the sample distributions. Our
group's imbalanced data caused high variability in sensitivity and spec-
ificity. A solution for this issue is to obtain many more medical records to
optimize the performance and stability of the systems.

In conclusion, this study applied four classical pattern-recognition
methods, Naïve Bayes, RF, KNN and SVM, to build a decision-support
system to estimate the stage of hepatic fibrosis based on real-time ul-
trasonic tissue elastography. The results reported here indicate that
machine learning could be a superior method for staging hepatitis
fibrosis compared to statistical methods. In addition, we believe that the
proposed models could be helpful tools to assist specialists in deter-
mining the stage of hepatic fibrosis. The algorithm can be adapted for
ultrasound diagnostic instruments such as the Hitachi-HI VISION Preirus
(HITACHI Medical Corporation, Tokyo Japan), and the pathological
classification can be estimated to provide doctors with faster and more
reliable diagnostic approaches for these diseases.

However, our research is still limited in some ways. Although these
models can reliably distinguish between two categories, because there is
some overlap among the different stages: these models do not distinguish
well among all five fibrosis stages (S0,S1,S2, S3, and S4). Furthermore, a
liver biopsy is still considered the gold standard for assessing hepatic
fibrosis in this research area, while intra-observer and inter-observer
variability can possibly cause disparities between RTE indices and bi-
opsies. In future research, we hope to obtain adequate data to provide a
more sophisticated test set to demonstrate the generalization abilities of
the models discussed in this paper.
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